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Abstract 
 
A four-month intensive measuring campaign with highly resolved spatial wind measurements was 
carried out in order to investigate regional near-surface airflow patterns in the meso-gamma to me-
so-beta scale in the region of Berne, situated in the Swiss Middleland between the Alps and the Ju-
ra mountains. Based on these wind measurements and on operational forecast data, a wind field 
information system was established as an important module for calculating the dispersion of air 
pollutants in complex terrain. In terms of broad operational use, the real-time diagnosis of wind pat-
terns must be carried out with a minimum of wind information transmitted via online connections. 
Therefore, a modern heuristic method hereafter referred to as subspace based cluster analysis 
was developed. The investigations reveal that diagnoses of the typical near-surface wind patterns 
in the region of Berne can be established with multiple combinations of only three automated sta-
tions. A notable characteristic of the inductive method is the possibility to achieve high site-specific 
accuracy of the evaluated and pre-processed typical wind fields. Validation of the results demon-
strates that the regional wind patterns can be diagnosed with good accuracy by using short fitting 
periods of 800 hours and 35 cluster representatives, which generate 15 synoptic wind field classes. 
The results of the study are verified by applying the method to the data set of the one-year inten-
sive measuring campaign in the region of Basle, Switzerland (REKLIP / MISTRAL project). Diag-
noses based on the typical regional wind fields correspond to the result of a time-lagged persis-
tence of two hours. Furthermore, it is shown that the prognostic wind patterns (14 km grid size) are 
related to the observed near-surface wind patterns, permitting their forecast, though with distinctly 
lower accuracy compared to the diagnosis. 
 
Keywords: near-surface wind; pattern recognition; air pollution; emergency response; operational use; statis-
tical methodology 
 

 
 
 
1. Introduction 
 

Regional near-surface airflow in densely 
populated and heavily industrialised regions 
is often not investigated and even if a data-
base exists the airflow is not known at the 
moment, although it is of major importance 
for assessing air pollutant dispersion. Espe-
cially in complex terrain reliable, fast and ac-
curate wind information should be available 
in order to manage industrial hazards by cal-
culating the time dependent regional near-
surface distribution of air pollutants. Being 
aware that atmospheric conditions such as 

diffusion, mixing height, plume chemistry, 
and deposition have to be considered, the 
focus here is on wind field diagnosis. In the 
literature related to the meso-gamma scale 
(a few km to a few tens of km), widely differ-
ing approaches to this problem can be found, 
the majority of which attempt to provide di-
agnoses as well as prognoses. 

Eckmann (1988) points out that wind field 
techniques for emergency response systems, 
that provide real-time dispersion estimates, 
should require limited field measurements. 
Davakis et al. (1998) thus use experimental 
data and account for terrain influences in or-
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der to calculate mass-consistent wind fields 
with one automated station and synoptic in-
formation from weather charts.  

The study of Carter et al. (2000) uses the 
information of a network of automated 
weather stations in order to work out fore-
casts for a few hours by analog forecasting, 
i.e. historical pattern matching. A short-term 
predictive tool based on persistence and a 
mass-consistent wind field model presented 
by Cox et al. (1998) requires a highly re-
solved meteorological network. In this context 
the comparative investigations of Gross 
(1996) demonstrated that the calculation of 
wind fields in complex terrain with mass-
consistent models only leads to realistic re-
sults if wind observations of a very dense 
network are available for initialisation.  

Davis et al. (1999) anticipate that the ap-
plied operational forecast system with multi-
ple-nest capability (MM5) can be used as a 
driver for other models so as to predict the 
dispersion of air pollutants in complex terrain. 
Finally, Dabberdt and Miller (2000) analyse 
an accidental release of a hazardous chemi-
cal under stationary conditions by applying a 
diagnostic mass-consistent wind field and fur-
thermore investigate ensemble simulations in 
order to quantify the uncertainties in the dis-
persion model simulations. 

The approach presented in this paper is 
based on the identification of the current wind 
pattern using as little wind information as 
possible and the direct access to pre-
processed typical regional wind fields evalu-
ated on the basis of an intensive measuring 
campaign. This approach draws on the MIS-
TRAL project (Gassmann et al., 1996), a sub-
project of the REKLIP (1999) climate research 
project. Within the framework of the MISTRAL 
project a two-year intensive measuring cam-
paign was conducted with the aim of examin-
ing near-surface regional wind patterns in the 
region of Basle, in the North-West of Switzer-
land. 

Based on the findings of this project and 
at the request of the Swiss Federal Office of 
Energy, the WINDBANK project (Graber and 
Tinguely, 1999; Graber and Gassmann, 2000) 
was commissioned to inventory and examine 
near-surface wind systems in regions where 
Swiss nuclear power plants are situated. On 
the basis of hourly-averaged wind patterns, 
methods were developed to enable the diag-
nosis of the patterns with the aid of current 
meteorological information. An attempt was 

also made to forecast wind field evolution us-
ing information provided by the operational 
forecast model of the Swiss Weather Service.  

The project presented in this paper uses 
the WINDBANK data set of a four-month (Ju-
ly – October 1997) intensive measuring cam-
paign in the hilly region of Berne. There, wind 
conditions are characterized by strong topo-
graphic forcing (Wanner and Furger 1990) 
and thermally driven circulation systems. 

The project adopts new approaches with 
the aim to develop a method for diagnosing 
typical wind patterns which requires a mini-
mum of online information. This would allow 
regions with less facilities to build and run 
operational systems more cost-effectively. 
The results provide the basis for operational 
wind field information systems. Such systems 
can be used not only for the evaluation of 
current airflow conditions but also for calcu-
lating the dispersion of air pollutants using 
models which take account of the topography 
as well as observed typical wind patterns in 
complex terrain. 

First, the measuring network and the basic 
data are described. The following chapter in-
troduces the modern heuristic method and 
explains the difference between the inductive 
and the deductive approach. The chapter on 
results focuses on the process of station se-
lection for the wind field diagnosis, the ap-
propriate number of wind field classes, and 
the required duration of the intensive measur-
ing campaign. Finally, the results are com-
pared to those of a similar project and evalu-
ated with regard to further investigations and 
operational use. 
 
 
2. Measuring Network and Data 
 

The measuring network in the Berne re-
gion (see Fig. 1) consisted of 22 temporarily 
installed wind measuring stations, 20 perma-
nent automated stations (ANETZ) operated 
by the Swiss Weather Service (MeteoSwiss), 
and two temporarily installed SODAR sys-
tems. The SODAR systems recorded local 
wind conditions at 50m and 150m above 
ground level as well as in a device at 250m 
above ground level. The careful evaluation of 
locations for the temporary stations ensured 
a high-level spatial representation and maxi-
mum free flow, i.e. flow conditions which are 
not disturbed by obstacles leading to local 
perturbations. With the exception of a few 
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tower stations, the measurements were taken 
at a height of 10m above ground level. Miss-
ing hourly average values (4.6%) were re-
constructed by linear regression based on 
observed zonal and meridional wind compo-
nents. A blanket view of wind conditions at a 
somewhat greater height above ground level 

was also desirable. Normally the relevant 
measuring or reanalysis data are not availa-
ble, necessitating the use of prognostic data. 
This has the advantage of allowing prognos-
tic data to be linked to observations using 
downscaling techniques. 

 

Fig. 1. Wind information network of the WINDBANK project. The topography represents the Swiss Middle-
land (430m – 700m asl) between the Jura Mountains in the North-West (1000m – 1500m asl) and the pre-
alpine part of the Swiss Middleland in the South-East (1100m – 2000m asl).  

The diamonds (♦) symbolize temporary and permanent wind measuring stations. The triangles (▲) desig-
nate SODAR system sites and the circles (●) near-surface grid points of the forecast model.  

„Map data PK500, reproduced with approval of the Swiss Federal Office of Topography (BA002455)“ 
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The measuring data are therefore supple-
mented by wind information at 25 grid points 
from the Swiss Model, the operational fore-
cast model of the Swiss Weather Service 
(Majewski, 1991). This is a non-hydrostatic 
mesoscale model with a horizontal grid size 
of about 14 km, which was operational up to 
the beginning of 2001. The selected grid 
points are on average about 300 meters 
above the effective topography. The corre-
sponding forecasts are all initialised at 12 
GMT. Note that the observation sites and the 
grid points of the forecast model are referred 
to hereafter as stations. 
 
 
3. Methods 
 

The procedure for the classification of the 
hourly flow patterns consists of four main 
steps:  

(a) selection of few diagnostic stations; the 
wind direction variables of these stations de-
lineate the diagnostic space, which is a sub-
space of the state space; (b) clustering within 
the diagnostic space by allocation of the ob-
servations to a number of N cluster repre-
sentatives; (c) calculation of the N wind field 
classes in the state space; and (d) assessing 
the quality of the classification.  

The aim of the strategy is to identify a 
cluster structure within a diagnostic space 
with the attribute that the corresponding clus-
ters in the state space produce a good value 
for the quality measurement. 

The evaluation of the typical wind patterns 
is based solely on wind direction data in order 
to avoid the formation of wind field classes 
with no differences in wind direction but only 
in wind speed. Another reason for this ap-
proach is the fact that the regional dispersion 
of air pollutants depends to a large extent on 
the wind direction at the emission site. As will 
be discussed below, this aspect – with regard 
to specific stationary facilities – can be spe-
cially addressed by the method discussed 
here. 

Therefore, a single flow pattern, called an 
event, is defined in this study by the wind di-
rection at all stations at a fixed time. The ob-
served events form single points in the state 
space which is delineated by the wind direc-
tion variables of all stations. The diagnostic 
space is defined as a subspace of the state 
space with a generally very low dimensionali-
ty. 

(a) Combinations of diagnostic stations 
can be selected by a local search procedure 
or, for a very small number of diagnostic sta-
tions, by an exhaustive search procedure 
(Michalewicz and Fogel, 2000). In the case of 
the former, for a given combination of sta-
tions an additional station is sought, leading 
to a very good result. In the case of the sec-
ond procedure, which necessitates a major 
calculation effort, the diagnostic stations are 
selected systematically. Findings show that 
the local search procedure very quickly pro-
duces good results.  

(b) Various cluster techniques lend them-
selves to the formation of a specific number 
of N clusters (Kaufman and Rousseeuw, 
1990; Arabie et al., 1996; Gordon, 1999). 
The procedure used in this study defines the 
projections of N events into the diagnostic 
space as cluster representatives, which sys-
tematically subdivide the diagnostic space on 
the basis of the Euclidean distance – in par-
allel with Thiessen polygons in a plane. This 
cluster procedure is extremely fast but it 
needs to screen many combinations of N 
stochastically selected events in order to ob-
tain a very good solution. The described pro-
cess groups all events in N clusters or clas-
ses, whereby every hour of the study period 
can be assigned to a particular class. 

(c) Whereas the evaluation of the typical 
wind patterns is performed using wind direc-
tion data only, their calculation is based on 
wind direction as well as on wind speed. For 
every wind field class and every station, the 
wind vectors are calculated by vectorial aver-
aging of the normalised wind vectors and by 
scalar averaging of the wind speeds. 

(d) The quality of a classification or a di-
agnosis is characterized by the Root Mean 
Square Error of calculated wind directions, 
RMSE(α), which is a continuous quality 
measurement appropriate for regional com-
parisons. In the case of model fitting, 
RMSE(α) corresponds to the standard devia-
tion and is calculated on the basis of the de-
viations between observations and the class-
specific mean values assigned to them. In the 
case of model validation, which is carried out 
in an independent period, RMSE(α) is calcu-
lated on the basis of the deviations between 
observations and the diagnosed values. Note 
that due to the circular data structure, the in-
termediate angle α can only take on values 
between -180° and +180°. To exclude any in-
fluence by weak-wind observations, which is 
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of secondary importance for regional trans-
port, observations of wind speeds below a 
specific threshold β e.g. 0.5ms-1 can be dis-
regarded when calculating RMSE(α). 

The diagnosis is carried out in the diag-
nostic space, which is partitioned by the clus-
ter representatives. The observed wind direc-
tions of the diagnostic stations can be as-
signed to the partitions, which themselves are 
linked to the wind field classes. An important 
element of the diagnosis is the consideration 
of the current mean regional wind speed, 
which is taken into account by its reconstruc-
tion with the aid of the wind speeds of the di-
agnostic stations. 

The method described in this paper is 
termed subspace based cluster analysis, in 
which the diagnostic space by definition is 
delineated by variables, i.e. the wind direc-
tions from the diagnostic stations. This is a 
modern heuristic method, which converts 
heuristic strategies into algorithmic methods 
for computers (Michalewicz and Fogel, 2000) 
and, as most heuristic methods, does not 
guarantee global optima. The statistical pro-
cedure is suitable for evaluating data with a 
linear or circular structure, using a minimum 
of information to achieve maximum accuracy 
in the diagnosis or prognosis of system 
states. It is particularly useful if system varia-
bles are characterised primarily by non-linear 
relationships. 

In the procedure described in this paper, 
which represents the inductive solution ap-
proach, flow patterns are clustered on the ba-
sis of fewer selected station data. Once a 
very good solution has been found, the diag-
nosis is made based on the stations which 
were used for classification. As will be 
demonstrated in detail below, the validation of 
the results constitutes a key component of the 
methodical procedure. The deductive proce-
dure calculates the wind field classes on the 
basis of the wind information at all stations. 
The optimal combination of diagnostic sta-
tions for diagnosing these classes is deter-
mined subsequently. 
 
 
4. Results 
 

The quality of classifications with respect 
to the number of classes and the number of 
diagnostic stations is shown in Fig. 2. From 
this, one can see that a good-quality classifi-
cation of the regional pattern of wind direc-

tions can be made using only three stations. 
The best solutions found for combinations of 
four or more diagnostic stations result in mi-
nor improvements only. In around 100 clas-
ses the curves calculated using information 
from three or more stations show a transition 
to a relatively linear progress. The initially 
sharp drop in the curve is primarily attributa-
ble to the improvement in the representation 
of the system states due to the formed clus-
ters. By contrast, the relatively linear drop of 
RMSE(α) is primarily attributable to the in-
crease in the number of classes, combined 
with an over-fitting of the statistical model. 
The next step will therefore involve further in-
vestigations of 100 classes. 
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Fig. 2. Quality measurement RMSE(α) relative to 
the number of diagnostic stations and the number 
of wind field classes. RMSE(α) is the Root Mean 
Square Error of the intermediate angles (α) be-
tween observed and calculated wind directions. 
The diagram shows the results of four particularly 
appropriate combinations of diagnostic stations. 
Threshold β = 0.0ms-1 i.e. all observations, includ-
ing weak winds, were used for the calculation of 
RMSE(α). 

 
 

Validation of the statistical model is per-
formed periodically (Fig. 3). Model fitting is 
performed exemplarily in the months of Ju-
ly/August (Period I) and validation in the 
months of September/October (Period II). 
The results of the 59'640 station combina-
tions are represented, resulting from the se-
lection of three diagnostic stations out of 72 
stations. The diagnoses made in the inde-
pendent period result in values for RMSE(α), 
which are approximately 5° higher than dur-
ing the fitting period. The strong correlation 
with a coefficient of determination (r2) of 0.87 
indicates that the method applied to the in-
tensive measuring campaign data set exhibits 
robust attributes.  
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Fig. 3. Quality measurement RMSE(α) for model fitting in Period I (July, August) and model validation in Pe-
riod II (September, October) for all combinations resulting from the selection of three diagnostic stations out 
of a total of 72 stations. Thus, each point corresponds to a specific wind field classification. 100 wind field 
classes, β = 0.0ms-1. 
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Fig. 4. Model fitting in Period I (hours 1 – 1476) and 
model validation in Period II (hours 1477 – 2952) 
dependent on the number of wind field classes. 
Best combination found for three diagnostic sta-
tions, β = 0.0ms-1. 

 
 
 

The solutions that produce relatively poor 
results primarily involve valley stations, which 
are influenced by diurnally forced mountain-
valley circulations.  

If slight reductions in the quality of the di-
agnoses are acceptable, a much larger num-

ber of station combinations can be used for 
the diagnosis. With a view to setting up an 
operational system, these can then be sub-
jected to an additional selection process 
based on operational, economic or other cri-
teria. 

Fig. 4 shows RMSE(α) for the fitting in Pe-
riod I (July, August) and the validation in Pe-
riod II (September, October) as a function of 
the number of wind field classes, obtained by 
means of the best classification found based 
on three diagnostic stations. It is apparent 
that no significant improvement in validation 
can be achieved in case of more than 35 
classes. 

Once the appropriate number of diagnos-
tic stations, an appropriate station combina-
tion and the number of classes practical for 
diagnostic purposes have been determined, 
the influence of the duration of the fitting pe-
riod is examined in terms of the performance 
of the statistical model in the validation peri-
od. For this purpose, model fitting is conduct-
ed in a variable time frame (hours 1 – t) while 
validation is performed in Period II (hours 
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1477 – 2952). Fig. 5 shows that only minor 
improvements in the validation period are 
achieved once the model fitting has been per-
formed over a time frame of more than 400 
hours. To obtain a more generalized verifica-
tion of this result, a model fitting can be con-
ducted over any period of 401 hours (fitting 
window, (t-200h) – (t+200h)), with model vali-
dation performed over the 2551 remaining 
hours of the study period. 
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Fig. 5. Validation of the statistical model as a func-
tion of fitting periods of varying lengths (from hour 
1 till hour t). Best combination found for three di-
agnostic stations and 35 wind field classes, β = 
0.0ms-1. 
 

 
If this fitting window is continually shifted 

from the start to the end of the study period, 
quite homogenous results are achieved (not 
shown) which confirm the observation that 
good diagnoses can be worked out even on 

the basis of a very short measuring cam-
paign. 

To verify this result, the data set from the 
intensive measuring campaign conducted in 
the region of Basle was considered (Kauf-
mann and Weber, 1996; REKLIP, 1999), 
though the data set does not contain wind in-
formation from the operational forecast model 
of the Swiss Weather Service. Examination of 
a one-year data set shows that a 801-hour 
period (Fig. 6) is recommended for model fit-
ting, which is related to the possibility of long-
lasting large-scale weather conditions. This is 
demonstrated by a model fitting performed 
over 401 hours (Fig. 7) at a time. The spike in 
the validation curve is related to marked anti-
cyclonic weather situation with inversion layer 
at times with fog, which prevailed from 25 
November to 15 December 1991. 

In the following the statistical and synopti-
cal features of an appropriate wind field clas-
sification in the region of Berne are de-
scribed. The classification is referred to as 
solution S1 and is defined by three automated 
diagnostic stations, 35 classes, and a wind 
speed threshold β of 0.5ms-1.  

Two diagnostic stations are situated in the 
centre of the study region at 10m and 110m 
above ground level, respectively (Fig. 1, site 
M, Mühleberg nuclear power plant, 483m 
asl). The third diagnostic station is situated 
on the main Jura ridge at 45m above ground 
(Fig. 1, site C, Chasseral, 1599m asl). 
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Fig. 6. Model fitting during 801-hour periods ((t-400h) – (t+400h)) and model validation in the 7983 remain-
ing hours of the MISTRAL intensive measuring campaign (September 1991 – August 1992). Best combina-
tion found for three diagnostic stations and 35 wind field classes, threshold β = 0.5ms-1 i.e. weak wind ob-
servations below 0.5ms-1 were disregarded for the calculation of RMSE(α). 
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Fig 7. Similar Fig. 6 but with model fitting periods of only 401 hours.  

 
 
As described in the section on methods 

the algorithm for the formation of the clusters 
screens many combinations of N cluster rep-
resentatives in order to obtain a very good 
result. The solution S1 is characterized by a 
RMSE(α) of 51.3°, which is the least value 
from a well shaped distribution with positive 
skewness and a maximal frequency at 52.8°. 

 Compared to the von Mises distribution, 
which is a highly typical distribution for circu-
lar data (Fisher, 1993), the symmetrical dis-
tribution of the intermediate angles α for solu-
tion S1 shows a stronger centric distribution 
whereby around 80% of the calculated wind 
directions for this number of classes are lo-
cated within the range of ± RMSE(α).  

A special property of the inductive diag-
nostic method, though one which can only be 
observed in a very small number of diagnos-
tic stations, is a high local accuracy of wind 
direction at the diagnostic stations as well as 
at the locations which are in close processual 
relation to them.  

With respect to the three diagnostic sta-
tions, this phenomenon, which is inherent to 
the methodical procedure, leads to remarka-
bly good values for RMSE(α) in the 18.8° – 
25.7° range (solution S1). This property al-
lows a wind field information system to be 
adapted easily to operational requirements in 
terms of spatial diagnostic accuracy. Of par-
ticular interest is the selection of diagnostic 
stations at potential emission sites. 

Note that the diagnosis described in the 
section on methods must be conducted 
based on information provided by the 35 

cluster representatives as well as the asso-
ciated wind field classes. When the 35 wind 
field classes defined by wind direction as 
well as wind speed at the stations are hierar-
chically clustered, 15 classes exhibit a leap 
in the curve of RMSE(α), which indicates that 
the 35 wind field classes can be grouped into 
15 synoptic wind field classes. This is asso-
ciated with a slight rise of RMSE(α) from 
51.3° to 53.1° (solution S1) as well as a gen-
erally complex partitioning of the diagnostic 
space.  

The number of 15 synoptic wind field 
classes thus obtained is of a similar order of 
magnitude as the 12 wind field classes in the 
Basle region in North-Western Switzerland 
(Kaufmann and Weber, 1996) and the 12 
identified basic wind patterns in Eastern Ida-
ho (Carter et al., 2000). 
 
 
5. Discussion 
 

In this paragraph the results of the study 
are compared with two projects, which use 
the deductive methodical approach. They in-
vestigate wind fields, which are normalized in 
respect to wind velocity, with the intention of 
preventing the formation of wind field classes 
with no difference in flow patterns but only in 
wind speed. The classification as well as the 
diagnosis are based on the same dataset and 
the evaluation of the quality of the wind field 
diagnosis depends on the rate of hitting the 
correct wind field class. 
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Table 1 
Performance for the deductive and inductive diagnostic method. Root Mean Square Error of the calculated 
wind direction, RMSE(α), Root Mean Square Error of the calculated wind speed RMSE(u). Region of Berne, 
July – October 1997 

Diagnostic data  Online data and forecast data f  Online data  

Diagnostic method  I       Deductive a   II    Inductive b   III        Inductive c  

 RMSE(α) 

(°) 

RMSE(u)  d 

(ms-1) 

RMSE(α) 

(°) 

RMSE(u)  d 

(ms-1) 

RMSE(α) 

(°) 

RMSE(u)  d 

(ms-1) 

Observation sites e 54.7 1.18 49.1 1.22 49.1 1.24 

Model grid points g 32.7 1.50 35.5 1.72 53.7 2.48 

 
a Diagnostic data from 20 automated stations and 25 model grid points (own calculations, based on the 

classification of Graber and Tinguely (1999), see text, β = 0.5ms-1). 
b Diagnostic data from 2 automated stations and 1 model grid point (as solution S1, see text, site C is re-

placed by the model grid point in the south-east). 
c Diagnostic data from 3 automated stations (solution S1, see text). 
d Mean wind speed at the observation sites and at the model grid points, for the interpretation of 

RMSE(u): 2.13ms-1 and 5.25ms-1, respectively.  
e Results for the temporary stations and the automated stations. 
f  Forecast data used in the same way as reanalysis data. 
g Results for the 25 model grid points of the weather prediction model. 

 

 
The results of the first project with the 

name MISTRAL illustrate that diagnosis re-
quires information from many stations. Thus, 
measurements from six automated stations 
are required to achieve a hit rate of 81%. If 
12 automated stations are used and optimum 
data availability is assured, correct allocation 
to one of the defined 12 wind field classes 
can be achieved in 91% of the cases 
(REKLIP, 1999).  

The second project, a follow-up study by 
Graber and Tinguely (1999) – on the same 
data basis as this paper – therefore uses the 
information from 20 automated stations and 
25 model grid points of the forecast model to 
diagnose 12 wind field classes. It remains to 
be stated that the operation of such dense 
automated measuring networks entails high 
costs and calls for a high level of operating 
security for stations and data lines. 

Table 1 compares the results of the project 
just reviewed with those of the inductive di-
agnostic method discussed here. The first 
two solutions (Tab. 1, column I and II) use 
online data as well as forecast data for the 
diagnosis and are of roughly comparable 
quality. However, they differ clearly in terms 
of the number of data sources required to 
perform the diagnosis (see footnote a and b). 

Hence the inductive diagnostic method turns 
out to be eminently suitable for obtaining 
good diagnostic results based on very little in-
formation. The third solution (Tab. 1, column 
III, solution S1) was worked out with the aid of 
three automated stations. This, understanda-
bly, is the reason why the model grid points 
exhibit larger values for RMSE(α). Mention 
has already been made of the greater local 
accuracy of wind direction produced by the 
inductive solution. 

The wind directions of the forecast data 
used agree quite well with the SODAR ob-
servations at the higher level as well as the 
observations at the few peak stations. Except 
for the strong advective weather conditions, 
this is not the case with the near-surface sta-
tions. However, it appears that the use of 
forecast data as predictors allows regional 
near-surface wind patterns to be forecast, al-
beit less accurately than by diagnosis. For 
the observation sites, the validated solution of 
a very good forecast produces a RMSE(α) of 
68.4° (β = 0.5ms-1), which is significantly 
higher than that obtained by diagnosis (49.1°, 
cf. Tab. 1). It remains to be pointed out that 
the advantages of the inductive method pre-
sented here are not realised in applying it for 
forecasting purposes, because the forecast 
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model produces a great deal of wind infor-
mation. Since no results at higher local accu-
racy could be obtained for the near-surface 
area using forecast data, and due to reasons 
of redundancy, operation of an inductive di-
agnostic system, which requires only online 
data, is recommended along with a separate-
ly running forecast system. 

Assuming that a flow pattern remains per-
sistent for a specific time, a diagnosis may be 
worked out based on flow patterns which 
were observed one, two or more hours ago. 
In this way, for the observation sites and for 
the first four hours, a diagnosis based on a 
time-lagged persistence reveals values for 
RMSE(α) of 34.4°, 49.5°, 59.1°, and 66.7° (β 
= 0.5ms-1). Hence the performance of the di-
agnosis of typical regional near-surface wind 
fields in the Bern region corresponds to the 
diagnosis, which can be achieved based on a 
time-lagged persistence of two hours. Very 
good diagnostic results could be achieved on 
the basis of a time-lagged persistence of one 
hour, but this would require an extremely 
dense automated network as well as continu-
al calculation of the current wind field, which 
would need to be performed within the hour. 

The investigations indicate that only part 
of the processes and the transitions, which 
determine flow patterns, can be diagnosed on 
the basis of the methodical procedure. Spe-
cial studies show that particularly circulation 
systems in valley locations are often defined 
on a lower scale and are therefore decoupled 
from regional processes. Thus, we hypothe-
size that the relatively major residual varia-
tions are above all attributable to the influ-
ence of micro-scale processes, the manifold 
transitions between the typical flow patterns 
as well as to the incorporation of events with 
weak mean flow. 

Similar to the studies of Davis et al. 
(1999), the part determined by recurring me-
so-gamma scale circulation can be examined 
by forming hourly wind field classes for the 24 
hours of the day. Taking these circulation 
systems into account and with respect to ob-
servation sites, a RMSE(α) of 78.5° (β = 
0.5ms-1) can be computed. Given a corre-
sponding overall variability of 95.3°, which 
can be calculated on the basis of a single 
class, and a variability of 49.1° (cf. Tab. 1) 
which cannot be further reduced, only one 
part of the residual variations of wind direc-
tion can be explained by diurnally forced cir-
culation systems. In this context it remains to 

be stated that the resultant wind directions of 
the 24 wind field classes are in fact defined 
by diurnally forced circulation systems. This 
can be verified simply by excluding observa-
tions of higher wind speeds when calculating 
the wind field classes. 

Finally, it remains to be stated that only a 
part of the observed variability in regional 
near-surface wind patterns can be diagnosed 
by typical wind fields. This points to the pos-
sibility of synthetic modelling (Sattler et al., 
1999) of the few typical wind conditions, 
which would greatly simplify the set-up of op-
erational systems, since cost-intensive 
measuring campaigns would not need to be 
conducted. However, wind field information 
obtained through an intensive measuring 
campaign provides a very good basis for 
work in the fields of air pollution prevention 
and settlement planning. 

The great advantage of any diagnosis of 
typical regional wind fields is the fact that 
these can be pre-processed, allowing suffi-
cient time and effort for their once-only calcu-
lation, e.g. taking into account the impact of 
terrain features and energy fluxes. As compa-
rable studies by Gross (1996) demonstrate, 
the calculation of wind fields using prognostic 
rather than diagnostic models is desirable. In 
particular, such approaches allow thermally 
driven flows to be modelled in valleys where 
no observations are available. Promising 
comparisons between observed and mod-
elled regional wind fields are presented by 
Kastendeuch et al. (2000). 

It can be assumed that wind field infor-
mation systems will soon become a standard 
tool for emergency management, particularly 
for densely populated settlement zones. 
These information systems are of interest not 
only in terms of emergencies but also in 
terms of smog situations where, for example, 
major emission sources can be better con-
trolled.  
 
 
6. Conclusion 
 

The subspace based cluster analysis 
method presented here is a modern heuristic 
approach to evaluate data with a linear or 
circular structure. It aims at diagnosing or 
forecasting system states based on a mini-
mum of information – particularly where sys-
tem variables are characterised primarily by 
non-linear relationships. With respect to the 
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diagnosis of regional near-surface wind 
fields, it demonstrates how these can be de-
veloped and optimised on the basis of short-
term intensive measuring campaigns and a 
low volume of current station data.  

Validation of the results shows that diag-
noses conducted in the region of Berne can 
be worked out based on three automated 
stations and a large number of related sta-
tion combinations, respectively. The study 
shows that the diagnosis of typical wind pat-
terns can be achieved on the basis of 35 
wind field classes and a remarkably short 
measuring campaign of only 800 hours. A 
higher number of classes or a longer fitting 
period only leads to minor improvements in 
the validation period. The suitability of a 
measuring campaign of 800 hours was veri-
fied in particular by the data set of a one-
year intensive measuring campaign con-
ducted in the region of Basle (REKLIP / 
MISTRAL project), where it was observed 
that the impact of different seasons was very 
minor.  

It has been shown that flow patterns in 
the operational forecast have a deterministic 
relationship with the observed near-surface 
patterns. Incorporation of forecast data from 
the Swiss Weather Service therefore enables 
a forecast of regional airflow, although the 
results for near-surface stations are not as 
good as those of diagnoses based on online 
wind information. Diagnoses with greater lo-
cal accuracy, which are often of major inter-
est for operational reasons, can be obtained 
only by the inductive method. 
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